Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Cheng-Jianen_US
dc.contributor.authorChung, I-Fangen_US
dc.contributor.authorChen, Cheng-Hungen_US
dc.date.accessioned2014-12-08T15:13:36Z-
dc.date.available2014-12-08T15:13:36Z-
dc.date.issued2007-08-01en_US
dc.identifier.issn0925-2312en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.neucom.2006.08.008en_US
dc.identifier.urihttp://hdl.handle.net/11536/10518-
dc.description.abstractIn this paper, an entropy-based quantum neuro-fuzzy inference system (EQNFIS) for classification applications is proposed. The EQNFIS model is a five-layer structure, which combines the traditional Takagi-Sugeno-Kang (TSK). Layer 2 of the EQNFIS model contains quantum membership functions, which are multilevel activation functions. Each quantum membership function is composed of the sum of sigmoid functions shifted by quantum intervals. A self-constructing learning algorithm, which consists of the self-clustering algorithm (SCA), quantum fuzzy entropy, and the backpropagation algorithm, is also proposed. The proposed SCA method is a fast, one-pass algorithm that dynamically estimates the number of clusters in an input data space. Quantum fuzzy entropy is employed to evaluate the information on pattern distribution in the pattern space. With this information, we can determine the number of quantum levels. The backpropagation algorithm is used to tune the adjustable parameters. Simulations were conducted to show the performance and applicability of the proposed model. (C) 2006 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectclassificationen_US
dc.subjectentropy-based fuzzy modelen_US
dc.subjectquantum functionen_US
dc.subjectself-clustering methoden_US
dc.subjectneural fuzzy networken_US
dc.titleAn entropy-based quantum neuro-fuzzy inference system for classification applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neucom.2006.08.008en_US
dc.identifier.journalNEUROCOMPUTINGen_US
dc.citation.volume70en_US
dc.citation.issue13-15en_US
dc.citation.spage2502en_US
dc.citation.epage2516en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000247745000032-
dc.citation.woscount11-
Appears in Collections:Articles


Files in This Item:

  1. 000247745000032.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.