完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGe, Zheng-Mingen_US
dc.contributor.authorYang, Cheng-Hsiungen_US
dc.date.accessioned2014-12-08T15:13:40Z-
dc.date.available2014-12-08T15:13:40Z-
dc.date.issued2007-07-15en_US
dc.identifier.issn0167-2789en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.physd.2007.03.019en_US
dc.identifier.urihttp://hdl.handle.net/11536/10560-
dc.description.abstractA new kind of generalized synchronization of two chaotic systems with uncertain parameters is proposed. Based on a pragmatical asymptotical stability theorem and an assumption of equal probability for ergodic initial conditions, an adaptive control law is derived so that it can be proved strictly that the common null solution of error dynamics and of parameter dynamics is actually asymptotically stable, i.e. these two identical systems are in generalized synchronization and the estimated parameters approach the uncertain values. It is called pragmatical generalized synchronization. Finally, two numerical examples are studied for two Quantum-CNN oscillator chaotic systems to show the effectiveness of the proposed generalized synchronization strategy with a double Duffing chaotic system as a goal system. (C) 2007 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectQuantum Cellular Neural Network (Quantum-CNN)en_US
dc.subjectchaosen_US
dc.subjectpragmatical generalized synchronizationen_US
dc.subjectpragmatic asymptotical stability theoremen_US
dc.subjectadaptive controlen_US
dc.titlePragmatical generalized synchronization of chaotic systems with uncertain parameters by adaptive controlen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.physd.2007.03.019en_US
dc.identifier.journalPHYSICA D-NONLINEAR PHENOMENAen_US
dc.citation.volume231en_US
dc.citation.issue2en_US
dc.citation.spage87en_US
dc.citation.epage94en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000248298600001-
dc.citation.woscount34-
顯示於類別:期刊論文


文件中的檔案:

  1. 000248298600001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。