完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Ge, Zheng-Ming | en_US |
| dc.contributor.author | Yang, Kun-Wei | en_US |
| dc.date.accessioned | 2014-12-08T15:13:44Z | - |
| dc.date.available | 2014-12-08T15:13:44Z | - |
| dc.date.issued | 2007-07-01 | en_US |
| dc.identifier.issn | 0960-0779 | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1016/j.chaos.2005.12.039 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/10623 | - |
| dc.description.abstract | In this paper, a unified chaotic system is studied in detail. Non-chaotic ranges within alpha is an element of [0,1] are found, where a is the constant parameter of the system. Chaotic range longer than alpha is an element of [0,1], alpha is an element of [-0.015, 1.152], is discovered, which is the extended chaotic range of unified chaotic system. Next, its chaos behaviors for five continuous periodic switch cases, k sin(2) omega T, m sin omega t, 0 similar to 1 triangular wave, -1 similar to 1 triangular wave, and 0 similar to 1 sawtooth wave, are presented. (c) 2006 Elsevier Ltd. All rights reserved. | en_US |
| dc.language.iso | en_US | en_US |
| dc.title | Chaotic ranges of a unified chaotic system and its chaos for five periodic switch cases | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/j.chaos.2005.12.039 | en_US |
| dc.identifier.journal | CHAOS SOLITONS & FRACTALS | en_US |
| dc.citation.volume | 33 | en_US |
| dc.citation.issue | 1 | en_US |
| dc.citation.spage | 246 | en_US |
| dc.citation.epage | 269 | en_US |
| dc.contributor.department | 機械工程學系 | zh_TW |
| dc.contributor.department | Department of Mechanical Engineering | en_US |
| dc.identifier.wosnumber | WOS:000245570800024 | - |
| dc.citation.woscount | 4 | - |
| 顯示於類別: | 期刊論文 | |

