Full metadata record
DC FieldValueLanguage
dc.contributor.authorDeligero, Eveythen_US
dc.contributor.authorFuchs, Michaelen_US
dc.contributor.authorNakada, Hitoshien_US
dc.date.accessioned2014-12-08T15:13:48Z-
dc.date.available2014-12-08T15:13:48Z-
dc.date.issued2007-07-01en_US
dc.identifier.issn1071-5797en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ffa.2006.03.004en_US
dc.identifier.urihttp://hdl.handle.net/11536/10667-
dc.description.abstractIn a recent paper, the first and third author proved a central limit theorem for the number of coprime solutions of the Diophantine approximation problem for formal Laurent series in the setting of the classical theorem of Khintchine. In this note, we consider a more general setting and show that even an invariance principle holds, thereby improving upon earlier work of the second author. Our result yields two consequences: (i) the functional central limit theorem and (ii) the functional law of the iterated logarithm. The latter is a refinement of Khintchine's theorem for formal Laurent series. Despite a lot of research efforts, the corresponding results for Diophantine approximation of real numbers have not been established yet. (C) 2006 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectformal Laurent seriesen_US
dc.subjectDiophantine approximationen_US
dc.subjectinvariance principlesen_US
dc.titleInvariance principles for Diophantine approximation of formal Laurent series over a finite base fielden_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ffa.2006.03.004en_US
dc.identifier.journalFINITE FIELDS AND THEIR APPLICATIONSen_US
dc.citation.volume13en_US
dc.citation.issue3en_US
dc.citation.spage535en_US
dc.citation.epage545en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000248016400006-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000248016400006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.