Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Yifanen_US
dc.contributor.authorYui, Norikoen_US
dc.date.accessioned2014-12-08T15:13:52Z-
dc.date.available2014-12-08T15:13:52Z-
dc.date.issued2007-06-01en_US
dc.identifier.issn0019-2082en_US
dc.identifier.urihttp://hdl.handle.net/11536/10716-
dc.description.abstractWe study differential equations satisfied by modular forms of two variables associated to Gamma(1) x Gamma(2), where Gamma(i) (i = 1, 2) are genus zero subgroups of SL2(R) commensurable with SL2(Z), e.g., Gamma(0)(N) or Gamma(0)(N)* for some N. In some examples, these differential equations are realized as the Picard-Fuchs differential equations of families of K3 surfaces with large Picard numbers, e.g., 19,18,17,16. Our method rediscovers some of the Lian-Yau examples of "modular relations" involving power series solutions to the second and the third order differential equations of Fuchsian type in [14], [15].en_US
dc.language.isoen_USen_US
dc.titleDifferential equations satisfied by modular forms and K3 surfacesen_US
dc.typeArticleen_US
dc.identifier.journalILLINOIS JOURNAL OF MATHEMATICSen_US
dc.citation.volume51en_US
dc.citation.issue2en_US
dc.citation.spage667en_US
dc.citation.epage696en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000252722400022-
dc.citation.woscount2-
Appears in Collections:Articles