完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Yi-Yuanen_US
dc.contributor.authorYoung, Kuu-Youngen_US
dc.date.accessioned2014-12-08T15:13:57Z-
dc.date.available2014-12-08T15:13:57Z-
dc.date.issued2007-06-01en_US
dc.identifier.issn0129-0657en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0129065707001044en_US
dc.identifier.urihttp://hdl.handle.net/11536/10752-
dc.description.abstractThe self-organizing map (SOM), as a kind of unsupervised neural network, has been used for both static data management and dynamic data analysis. To further exploit its search abilities, in this paper we propose an SOM-based algorithm (SOMS) for optimization problems involving both static and dynamic functions. Furthermore, a new SOM weight updating rule is proposed to enhance the learning efficiency; this may dynamically adjust the neighborhood function for the SOM in learning system parameters. As a demonstration, the proposed SOMS is applied to function optimization and also dynamic trajectory prediction, and its performance compared with that of the genetic algorithm (GA) due to the similar ways both methods conduct searches.en_US
dc.language.isoen_USen_US
dc.subjectself-organizing mapen_US
dc.subjectoptimizationen_US
dc.subjectdynamic functionen_US
dc.subjectgenetic algorithmen_US
dc.titleAn SOM-based algorithm for optimization with dynamic weight updatingen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0129065707001044en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF NEURAL SYSTEMSen_US
dc.citation.volume17en_US
dc.citation.issue3en_US
dc.citation.spage171en_US
dc.citation.epage181en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000248242000004-
dc.citation.woscount8-
顯示於類別:期刊論文


文件中的檔案:

  1. 000248242000004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。