完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Tsung I.en_US
dc.contributor.authorLee, Jack C.en_US
dc.contributor.authorHsieh, Wan J.en_US
dc.date.accessioned2014-12-08T15:13:57Z-
dc.date.available2014-12-08T15:13:57Z-
dc.date.issued2007-06-01en_US
dc.identifier.issn0960-3174en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11222-006-9005-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/10753-
dc.description.abstractA finite mixture model using the Student's t distribution has been recognized as a robust extension of normal mixtures. Recently, a mixture of skew normal distributions has been found to be effective in the treatment of heterogeneous data involving asymmetric behaviors across subclasses. In this article, we propose a robust mixture framework based on the skew t distribution to efficiently deal with heavy-tailedness, extra skewness and multimodality in a wide range of settings. Statistical mixture modeling based on normal, Student's t and skew normal distributions can be viewed as special cases of the skew t mixture model. We present analytically simple EM-type algorithms for iteratively computing maximum likelihood estimates. The proposed methodology is illustrated by analyzing a real data example.en_US
dc.language.isoen_USen_US
dc.subjectEM-type algorithmsen_US
dc.subjectmaximum likelihooden_US
dc.subjectoutlying observationsen_US
dc.subjectPX-EM algorithmen_US
dc.subjectskew t mixturesen_US
dc.subjecttruncated normalen_US
dc.titleRobust mixture modeling using the skew t distributionen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11222-006-9005-8en_US
dc.identifier.journalSTATISTICS AND COMPUTINGen_US
dc.citation.volume17en_US
dc.citation.issue2en_US
dc.citation.spage81en_US
dc.citation.epage92en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000247169400001-
dc.citation.woscount43-
顯示於類別:期刊論文


文件中的檔案:

  1. 000247169400001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。