標題: 混合的偏斜常態分布其及應用
On the mixture of skew normal distributions and its applications
作者: 顏淑儀
Shu-Yi Yen
李昭勝
林宗儀
Jack C.Lee
Tsung I. Lin
統計學研究所
關鍵字: EM型演算法;蒙地卡羅馬可夫鏈;最大概似估計;混合偏斜常態;EM-type algorithms;Fisher information;Markov chain Monte Carlo;maximum likelihood estimation;skew normal mixtures
公開日期: 2004
摘要: 混合的常態分佈對於來自不同來自母體的異質性資料提供了一種的自然模型架構。近二十年來, 偏斜的常態分佈對於處理非對稱的資料問題已被驗證是一種很有用的工具。 本文我們提出了以概似函數與貝氏抽樣為基礎之方法去處理混合偏斜常態分佈的問題。 我們將利用"期望最大值型式"(EM-type)演算法求最大概似估計值。 對於所提出的先驗分佈及所推導之後驗分佈的結果, 我們也運用馬可夫鏈蒙地卡羅發展出貝氏的計算方法。 最後我們透過兩個實例來闡述所提出模型之應用。
The normal mixture model provides a natural framework for modelling the heterogeneity of a population arising from several groups. In the last two decades, the skew normal distribution has been shown to be useful for modelling asymmetric data in many applied problems. In this thesis, we propose likelihood-based and Bayesian sampling-based approaches to address the problem of modelling data by a mixture of skew normal distributions.EM-type algorithms are implemented for computing the maximum likelihood estimates. The prior as well as the resulting posterior distributions are developed for Bayesian computation via Markov chain Monte Carlo methods.Applications are illustrated through two real examples.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009226507
http://hdl.handle.net/11536/76881
顯示於類別:畢業論文


文件中的檔案:

  1. 650701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。