完整後設資料紀錄
DC 欄位語言
dc.contributor.author顏淑儀en_US
dc.contributor.authorShu-Yi Yenen_US
dc.contributor.author李昭勝en_US
dc.contributor.author林宗儀en_US
dc.contributor.authorJack C.Leeen_US
dc.contributor.authorTsung I. Linen_US
dc.date.accessioned2014-12-12T02:47:21Z-
dc.date.available2014-12-12T02:47:21Z-
dc.date.issued2004en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009226507en_US
dc.identifier.urihttp://hdl.handle.net/11536/76881-
dc.description.abstract混合的常態分佈對於來自不同來自母體的異質性資料提供了一種的自然模型架構。近二十年來, 偏斜的常態分佈對於處理非對稱的資料問題已被驗證是一種很有用的工具。 本文我們提出了以概似函數與貝氏抽樣為基礎之方法去處理混合偏斜常態分佈的問題。 我們將利用"期望最大值型式"(EM-type)演算法求最大概似估計值。 對於所提出的先驗分佈及所推導之後驗分佈的結果, 我們也運用馬可夫鏈蒙地卡羅發展出貝氏的計算方法。 最後我們透過兩個實例來闡述所提出模型之應用。zh_TW
dc.description.abstractThe normal mixture model provides a natural framework for modelling the heterogeneity of a population arising from several groups. In the last two decades, the skew normal distribution has been shown to be useful for modelling asymmetric data in many applied problems. In this thesis, we propose likelihood-based and Bayesian sampling-based approaches to address the problem of modelling data by a mixture of skew normal distributions.EM-type algorithms are implemented for computing the maximum likelihood estimates. The prior as well as the resulting posterior distributions are developed for Bayesian computation via Markov chain Monte Carlo methods.Applications are illustrated through two real examples.en_US
dc.language.isoen_USen_US
dc.subjectEM型演算法zh_TW
dc.subject蒙地卡羅馬可夫鏈zh_TW
dc.subject最大概似估計zh_TW
dc.subject混合偏斜常態zh_TW
dc.subjectEM-type algorithmsen_US
dc.subjectFisher informationen_US
dc.subjectMarkov chain Monte Carloen_US
dc.subjectmaximum likelihood estimationen_US
dc.subjectskew normal mixturesen_US
dc.title混合的偏斜常態分布其及應用zh_TW
dc.titleOn the mixture of skew normal distributions and its applicationsen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 650701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。