標題: Robust mixture modeling using the skew t distribution
作者: Lin, Tsung I.
Lee, Jack C.
Hsieh, Wan J.
統計學研究所
資訊管理與財務金融系 註:原資管所+財金所
Institute of Statistics
Department of Information Management and Finance
關鍵字: EM-type algorithms;maximum likelihood;outlying observations;PX-EM algorithm;skew t mixtures;truncated normal
公開日期: 1-六月-2007
摘要: A finite mixture model using the Student's t distribution has been recognized as a robust extension of normal mixtures. Recently, a mixture of skew normal distributions has been found to be effective in the treatment of heterogeneous data involving asymmetric behaviors across subclasses. In this article, we propose a robust mixture framework based on the skew t distribution to efficiently deal with heavy-tailedness, extra skewness and multimodality in a wide range of settings. Statistical mixture modeling based on normal, Student's t and skew normal distributions can be viewed as special cases of the skew t mixture model. We present analytically simple EM-type algorithms for iteratively computing maximum likelihood estimates. The proposed methodology is illustrated by analyzing a real data example.
URI: http://dx.doi.org/10.1007/s11222-006-9005-8
http://hdl.handle.net/11536/10753
ISSN: 0960-3174
DOI: 10.1007/s11222-006-9005-8
期刊: STATISTICS AND COMPUTING
Volume: 17
Issue: 2
起始頁: 81
結束頁: 92
顯示於類別:期刊論文


文件中的檔案:

  1. 000247169400001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。