Full metadata record
DC FieldValueLanguage
dc.contributor.authorHu, Jwu-Shengen_US
dc.contributor.authorSu, Tzung-Minen_US
dc.date.accessioned2014-12-08T15:13:58Z-
dc.date.available2014-12-08T15:13:58Z-
dc.date.issued2007-06-01en_US
dc.identifier.issn1083-4435en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TMECH.2007.897280en_US
dc.identifier.urihttp://hdl.handle.net/11536/10756-
dc.description.abstractThis paper proposes a novel procedure for detecting environmental changes by using a pan-tilt-zoom (PTZ) camera. Conventional approaches based on pixel space and stationary cameras need time-consuming image registration to yield pixel statistics. This work proposes an alternative approach to describe each scene with a Gaussian mixture model (GMM) via a spatial-temporal statistical method. Although details of the environment covered by the camera are lost; this model is efficient and robust in recognizing scene and detecting scene changes in the environment. Moreover, the threshold selection for separating different environmental changes is convenient by using the proposed framework. The effectiveness of the proposed method is demonstrated experimentally in an office environment.en_US
dc.language.isoen_USen_US
dc.subjectGaussian distributionsen_US
dc.subjectmachine visionen_US
dc.subjectpattern recognitionen_US
dc.subjectsurveillanceen_US
dc.titleRobust environmental change detection using PTZ camera via spatial-temporal probabilistic modelingen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TMECH.2007.897280en_US
dc.identifier.journalIEEE-ASME TRANSACTIONS ON MECHATRONICSen_US
dc.citation.volume12en_US
dc.citation.issue3en_US
dc.citation.spage339en_US
dc.citation.epage344en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000247547600013-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000247547600013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.