完整後設資料紀錄
DC 欄位語言
dc.contributor.author楊錦洲en_US
dc.contributor.author陳百盛en_US
dc.contributor.authorChing-Chow Yangen_US
dc.contributor.authorBai-Sheng Chenen_US
dc.date.accessioned2015-01-12T12:53:20Z-
dc.date.available2015-01-12T12:53:20Z-
dc.date.issued2005-07-01en_US
dc.identifier.issn1023-9863en_US
dc.identifier.urihttp://hdl.handle.net/11536/107933-
dc.description.abstract本研究建立了整合品質屬性之重要度與滿意度調查的類神經網路之顧客群分類模式。經過品質屬性之重要度與滿意度調查及分析之後,再以因素分析來萃取出顧客所認為重要的品質屬性構面,並以這些重要構面來建立類神經網路學習模式。利用倒傳遞類神經網路具有辦識類別的特性,來建構顧客對於品質屬性之滿意程度的分群判別模式,並與多變量之線性區別分析和二次區別分析相比較。研究結果顯示,類神經網路的整體分類正確率和預測的精確性均較佳,顯示類神經網路有較佳的分類效果。此外,根據網路中輸入變數對輸出變數的貢獻度分析結果,可明顯得知影響顧客分群結果的決定性因素有那些。對公司而言,由分析的結果可以瞭解不同群體的顧客所需要改善的重點有那些,可作為擬定改善策略上的參考,對於提昇服務品質上有相當程度的貢獻。zh_TW
dc.description.abstractThis research establishes a classification model for customer groups using a neural network model. The proposed approach is based on the quality attributes from importance and satisfaction surveys. Factor analysis is utilized first to extract several important service quality attributes from customers. These attributes are used to construct the neural network learning process. The back-propagation neural network (BPN) is then used to establish a customer group satisfaction classification model. A similar classification model is produced using linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). The classification performances of these methods are then compared with that from the BPN model. After the comparisons, it can be verified that the overall classification rate and prediction accuracy of the BPN is superior to those obtained using the LDA and QDA models. According to the input node contribution analysis of the output nodes. we can obtain the determinant variables that affect the classified customer satisfaction groups. Therefore, companies can obtain improvement information from the contribution analysis to improve their service quality and increase customer satisfaction.en_US
dc.subject顧客滿意zh_TW
dc.subject倒傳遞類神經網路zh_TW
dc.subject線性區別分析zh_TW
dc.subject二次區別分析zh_TW
dc.subjectCustomer Satisfactionzh_TW
dc.subjectBackpropagation Neural Networkzh_TW
dc.subjectLinear Discriminant Analysiszh_TW
dc.subjectQuadratic Discriminant Analysiszh_TW
dc.title應用類神經網路於顧客群之分類分析zh_TW
dc.titleA Neural Network Approach for Customer Group Classification Analysisen_US
dc.identifier.journal管理與系統zh_TW
dc.identifier.journalJournal of Management and Systemsen_US
dc.citation.volume12en_US
dc.citation.issue3en_US
dc.citation.spage43en_US
dc.citation.epage65en_US
dc.contributor.departmentInstitute of Business and Managementen_US
dc.contributor.department經營管理研究所zh_TW
顯示於類別:管理與系統


文件中的檔案:

  1. 10239863-01203-27.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。