标题: 网路经济时代下企业整合型资料库建置暨应用效益-以NIIS中央资料库建置为例
Building an Enterprise Integrated Database with Its Practice Benefits under the Era of Internet Economy-A Case Study of Building NIIS Central Database
作者: 邱瑞科
郭建吾
陈圣棋
Ruey-Kei Chiu
Chien-Wu Kuo
Sheng-Chi Chen
Institute of Business and Management
经营管理研究所
关键字: 全国预防接种资讯管理系统;整合型资料库;疫苗采购;灰色预测;倒传递類神经网路;National Immunization Information System;Integrated Database;Vaccine Procurement;Grey Prediction;Back-Propagation Neural Network
公开日期: 1-七月-2005
摘要: 本研究提出一个建置企业整合型资料库的设计架构,它藉由资料选择性复制策略的方式,将分散于各地方的资料库萃取并汇整至企业营运总部,建立一个可以更有效提供企业管理及决策所需资讯的整合型企业资料库。本研究并以我国卫生署疾病管制局预防接种管理系统(National Immunization Information System, NIIS)之实验性中央资料库设计及建立为研究之实作案例,将分散于各县市卫生局、卫生所之预防接种相关资料库进行汇集并整合建立一个可有效支援建立全国预防接种管理及决策系统所需资料來源之中央资料库。为实证中央资料库建置可更有效支援NIIS决策支援之真实价值,本研究乃进一步尝试应用本研究所建立的中央资料库作为资料來源,建立可支援我国年度疫苗接种采购预测模式,提供疾病管制局作为年度各類型疫苗最适采购量之依据,用以取代原有以人工经验计算之方式。在此一决策应用的研究中,第一阶段推估分别应用灰色预测模式及倒传递類神经网路预测模式,根据歷年地方卫生所疫苗施打人數、疫苗施打完成率及新年度疫苗施打的目标人數,建构新年度疫苗施打人數预测模式,实验结果显示,倒传递应用類神经网路比灰色理論可以获得较佳的预测值。第二阶段应用第一阶段所得之新年度疫苗施打人數预测量,进一步合并考量疫苗耗损率、保留库存及上年度之疫苗库存量等因素进行全国性新年度预防接种疫苗最适采购量之计算。实验性中央资料库系统建置完成后,由实证结果得知,应用中央资料库为资料來源所建立之年度疫苗采购量预测模式相较于传统人工计算模式能够得到更精准的下年度疫苗采购量。它不仅可对疫苗采购之最佳化规划提供最完整的资料來源,更可提供快速支援全国性预防接种管理性统计分析报表及资讯产生之功能。
In this research we present an architectural design model of building an enterprise integrated database by using the approach of partial replication of data to extract and aggregate the databases dispersed at different locations to effectively provide the required information for business management and decision making. We take the design and creation of an experimental central database for National Immunization Information System (NIIS), Center for Disease Control (CDC) of Department of Health (DOH), as a case of practical study to investigate how an integrated central database can be built by making use of the distributed database located at each county's and city's health bureau so that the capabilities of building decision-making applications and the administration for the operations of national immunization can be supported. In order to verify the true value of being able to more effectively support NIIS decision support through the implementation of central database, in this research we also attempt to create a prediction model for yearly national vaccine procurement as a basis for CDC to purchase the best-fit amount of vary types of vaccine so that the current approach of using human experience to compute the yearly vaccine purchasing amount can be substituted. In this study of building the application of decision making, in the first stage we use Grey Prediction Theory and Back-Propagation Neural Network separately to build the prediction model to predict the number of immunization population for the next year based on the major factors of the number of immunization, population and the completion rate, and the objective immunization population of next year of each city's bureau of health. In the second stage, we take the prediction result of the next-year from the first stage and further consider the yearly vaccine waste rage, the amount of reservation stock, and last year stock amount to compute the amount of yearly national vaccine procurement. After completing the experimental system building of central database system, the experimental result shows that taking the data resources from the central database to build the prediction model for the yearly national vaccine procurement which can be more accurately to compute the next year's vaccine procurement, and it also can efficiently generate the information and report for the management statistical analysis.
URI: http://hdl.handle.net/11536/107943
ISSN: 1023-9863
期刊: 管理与系统
Journal of Management and Systems
Volume: 12
Issue: 3
起始页: 67
结束页: 88
显示于类别:Journal of Management and System


文件中的档案:

  1. 10239863-01203-28.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.