完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Y-Chuangen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.date.accessioned2014-12-08T15:14:02Z-
dc.date.available2014-12-08T15:14:02Z-
dc.date.issued2007-05-15en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.amc.2006.11.085en_US
dc.identifier.urihttp://hdl.handle.net/11536/10797-
dc.description.abstractVertex connectivity and edge connectivity are two important parameters in interconnection networks. Even though they reflect the fault tolerance correctly, they undervalue the resilience of large networks. By the concept of conditional connectivity and super-connectivity, the concept of restricted vertex connectivity and restricted edge connectivity of graphs was proposed by Esfahanian [A.H. Esfahanian, Generalized measures of fault tolerance with application to N-cube networks, IEEE Transactions on Computers 38 (1989) 1586-1591]. Such measures take the resilience of large networks into consideration. In this paper, we propose three families of interconnection networks and discuss their restricted vertex connectivity and restricted edge connectivity. In particular, the hypercubes, twisted-cubes, crossed-cubes, mobius cubes, star graphs, pancake graphs, recursive circulant graphs, and k-ary n-cubes are special cases of these families. (c) 2006 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectconnectivityen_US
dc.subjectsuper-connectivityen_US
dc.subjectrestricted vertex connectivityen_US
dc.subjectrestricted edge connectivityen_US
dc.titleRestricted connectivity for three families of interconnection networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2006.11.085en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume188en_US
dc.citation.issue2en_US
dc.citation.spage1848en_US
dc.citation.epage1855en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000248158900076-
dc.citation.woscount18-
顯示於類別:期刊論文


文件中的檔案:

  1. 000248158900076.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。