完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Wen-Chiehen_US
dc.contributor.authorLiu, Yanxien_US
dc.date.accessioned2014-12-08T15:14:09Z-
dc.date.available2014-12-08T15:14:09Z-
dc.date.issued2007-05-01en_US
dc.identifier.issn0162-8828en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TPAMI.2007.1053en_US
dc.identifier.urihttp://hdl.handle.net/11536/10848-
dc.description.abstractA near-regular texture ( NRT) is a geometric and photometric deformation from its regular origin-a congruent wallpaper pattern formed by 2D translations of a single tile. A dynamic NRT is an NRT under motion. Although NRTs are pervasive in man-made and natural environments, effective computational algorithms for NRTs are few. This paper addresses specific computational challenges in modeling and tracking dynamic NRTs, including ambiguous correspondences, occlusions, and drastic illumination and appearance variations. We propose a lattice-based Markov-Random-Field ( MRF) model for dynamic NRTs in a 3D spatiotemporal space. Our model consists of a global lattice structure that characterizes the topological constraint among multiple textons and an image observation model that handles local geometry and appearance variations. Based on the proposed MRF model, we develop a tracking algorithm that utilizes belief propagation and particle filtering to effectively handle the special challenges of the dynamic NRT tracking without any assumption on the motion types or lighting conditions. We provide quantitative evaluations of the proposed method against existing tracking algorithms and demonstrate its applications in video editing.en_US
dc.language.isoen_USen_US
dc.subjectnear-regular textureen_US
dc.subjectvisual trackingen_US
dc.subjectdynamic near-regular texture trackingen_US
dc.subjectmodel-based trackingen_US
dc.subjecttexture replacementen_US
dc.subjectvideo editingen_US
dc.titleA lattice-based MRF model for dynamic near-regular texture trackingen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TPAMI.2007.1053en_US
dc.identifier.journalIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCEen_US
dc.citation.volume29en_US
dc.citation.issue5en_US
dc.citation.spage777en_US
dc.citation.epage792en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000244855700003-
dc.citation.woscount30-
顯示於類別:期刊論文


文件中的檔案:

  1. 000244855700003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。