標題: | Node-pancyclicity and edge-pancyclicity of hypercube variants |
作者: | Hu, Ken S. Yeoh, Shyun-Shyun Chen, Chiuyuan Hsu, Lih-Hsing 應用數學系 Department of Applied Mathematics |
關鍵字: | interconnection networks;hypercube;crossed cube;Mobius cube;locally twisted cube;pancyclicity |
公開日期: | 15-四月-2007 |
摘要: | Twisted cubes, crossed cubes, Mobius cubes, and locally twisted cubes are some of the widely studied hypercube variants. The 4-pancyclicity of twisted cubes, crossed cubes, Mobius cubes, locally twisted cubes and the 4-edge-pancyclicity of twisted cubes, crossed cubes, Mobius cubes are proven in [C.P. Chang, J.N. Wang, L.H. Hsu, Topological properties of twisted cube, Inform. Sci. 113 (1999) 147-167; C.P. Chang, T.Y. Sung, L.H. Hsu, Edge congestion and topological properties of crossed cubes, IEEE Trans. Parall. Distr. 11 (1) (2000) 64-80; J. Fan, Hamilton-connectivity and cycle embedding of the Mobius cubes, Inform. Process. Lett. 82 (2002) 113-117; X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-pancyclic, Appl. Math. Lett. 17 (2004) 919-925; J. Fan, N. Yu, X. Jia, X. Lin, Embedding of cycles in twisted cubes with edge-pancyclic, Algorithmica, submitted for publication; J. Fan, X. Lin, X. Jia, Node-pancyclic and edge-pancyclic of crossed cubes, Inform. Process. Lett. 93 (2005) 133-138; M. Xu, J.M. Xu, Edge-pancyclicity of Mobius cubes, Inform. Process. Lett. 96 (2005) 136-140], respectively. It should be noted that 4-edge-pancyclicity implies 4-node-pancyclicity which further implies 4-pancyclicity. In this paper, we outline an approach to prove the 4-edge-pancyclicity of some hypercube variants and we prove in particular that Mobius cubes and locally twisted cubes are 4-edge-pancyclic. (c) 2006 Elsevier B.V. All rights reserved. |
URI: | http://dx.doi.org/10.1016/j.ipl.2006.10.008 http://hdl.handle.net/11536/10909 |
ISSN: | 0020-0190 |
DOI: | 10.1016/j.ipl.2006.10.008 |
期刊: | INFORMATION PROCESSING LETTERS |
Volume: | 102 |
Issue: | 1 |
起始頁: | 1 |
結束頁: | 7 |
顯示於類別: | 期刊論文 |