標題: Node-pancyclicity and edge-pancyclicity of hypercube variants
作者: Hu, Ken S.
Yeoh, Shyun-Shyun
Chen, Chiuyuan
Hsu, Lih-Hsing
應用數學系
Department of Applied Mathematics
關鍵字: interconnection networks;hypercube;crossed cube;Mobius cube;locally twisted cube;pancyclicity
公開日期: 15-Apr-2007
摘要: Twisted cubes, crossed cubes, Mobius cubes, and locally twisted cubes are some of the widely studied hypercube variants. The 4-pancyclicity of twisted cubes, crossed cubes, Mobius cubes, locally twisted cubes and the 4-edge-pancyclicity of twisted cubes, crossed cubes, Mobius cubes are proven in [C.P. Chang, J.N. Wang, L.H. Hsu, Topological properties of twisted cube, Inform. Sci. 113 (1999) 147-167; C.P. Chang, T.Y. Sung, L.H. Hsu, Edge congestion and topological properties of crossed cubes, IEEE Trans. Parall. Distr. 11 (1) (2000) 64-80; J. Fan, Hamilton-connectivity and cycle embedding of the Mobius cubes, Inform. Process. Lett. 82 (2002) 113-117; X. Yang, G.M. Megson, D.J. Evans, Locally twisted cubes are 4-pancyclic, Appl. Math. Lett. 17 (2004) 919-925; J. Fan, N. Yu, X. Jia, X. Lin, Embedding of cycles in twisted cubes with edge-pancyclic, Algorithmica, submitted for publication; J. Fan, X. Lin, X. Jia, Node-pancyclic and edge-pancyclic of crossed cubes, Inform. Process. Lett. 93 (2005) 133-138; M. Xu, J.M. Xu, Edge-pancyclicity of Mobius cubes, Inform. Process. Lett. 96 (2005) 136-140], respectively. It should be noted that 4-edge-pancyclicity implies 4-node-pancyclicity which further implies 4-pancyclicity. In this paper, we outline an approach to prove the 4-edge-pancyclicity of some hypercube variants and we prove in particular that Mobius cubes and locally twisted cubes are 4-edge-pancyclic. (c) 2006 Elsevier B.V. All rights reserved.
URI: http://dx.doi.org/10.1016/j.ipl.2006.10.008
http://hdl.handle.net/11536/10909
ISSN: 0020-0190
DOI: 10.1016/j.ipl.2006.10.008
期刊: INFORMATION PROCESSING LETTERS
Volume: 102
Issue: 1
起始頁: 1
結束頁: 7
Appears in Collections:Articles


Files in This Item:

  1. 000244631900001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.