完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, Ming-Chienen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:14:20Z-
dc.date.available2014-12-08T15:14:20Z-
dc.date.issued2007-04-01en_US
dc.identifier.issn1383-7621en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.sysarc.2006.10.008en_US
dc.identifier.urihttp://hdl.handle.net/11536/10951-
dc.description.abstractThe hypercube Q(n) is one of the most popular networks. In this paper, we first prove that the n-dimensional hypercube is 2n - 5 conditional fault-bipancyclic. That is, an injured hypercube with up to 2n - 5 faulty links has a cycle of length l for every even 4 <= 1 <= 2(n) when each node of the hypercube is incident with at least two healthy links. In addition, if a certain node is incident with less than two healthy links, we show that an injured hypercube contains cycles of all even lengths except hamiltonian cycles with up to 2n - 3 faulty links. Furthermore, the above two results are optimal. In conclusion, we find cycles of all possible lengths in injured hypercubes with up to 2n - 5 faulty links under all possible fault distributions. (C) 2006 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectcycle embeddingen_US
dc.subjecthypercubeen_US
dc.subjectbipancyclicen_US
dc.subjectconditionalen_US
dc.subjectfault toleranceen_US
dc.titleHighly fault-tolerant cycle embeddings of hypercubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.sysarc.2006.10.008en_US
dc.identifier.journalJOURNAL OF SYSTEMS ARCHITECTUREen_US
dc.citation.volume53en_US
dc.citation.issue4en_US
dc.citation.spage227en_US
dc.citation.epage232en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000245331200005-
dc.citation.woscount12-
顯示於類別:期刊論文


文件中的檔案:

  1. 000245331200005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。