Full metadata record
DC FieldValueLanguage
dc.contributor.authorYan, JHen_US
dc.contributor.authorChen, JJen_US
dc.contributor.authorChang, GJen_US
dc.date.accessioned2014-12-08T15:02:25Z-
dc.date.available2014-12-08T15:02:25Z-
dc.date.issued1996-08-27en_US
dc.identifier.issn0166-218Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/1095-
dc.description.abstractQuasi-threshold graphs are defined recursively by the following rules: (1) K-1 is a quasi-threshold graph, (2) adding a new vertex adjacent to all vertices of a quasi-threshold graph results in a quasi-threshold graph, (3) the disjoint union of two quasi-threshold graphs is a quasi-threshold graph. This paper gives some new equivalent definitions of a quasi-threshold graph. From them, linear time recognition algorithms follow. We also give linear time algorithms for the edge domination problem and the bandwidth problem in this class of graphs.en_US
dc.language.isoen_USen_US
dc.titleQuasi-threshold graphsen_US
dc.typeArticleen_US
dc.identifier.journalDISCRETE APPLIED MATHEMATICSen_US
dc.citation.volume69en_US
dc.citation.issue3en_US
dc.citation.spage247en_US
dc.citation.epage255en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1996VD36900004-
dc.citation.woscount17-
Appears in Collections:Articles


Files in This Item:

  1. A1996VD36900004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.