Full metadata record
DC FieldValueLanguage
dc.contributor.authorGe, Zheng-Mingen_US
dc.contributor.authorYi, Chang-Xianen_US
dc.date.accessioned2014-12-08T15:14:22Z-
dc.date.available2014-12-08T15:14:22Z-
dc.date.issued2007-04-01en_US
dc.identifier.issn0960-0779en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.chaos.2005.10.086en_US
dc.identifier.urihttp://hdl.handle.net/11536/10969-
dc.description.abstractIn this paper, the chaotic behaviors of a nonlinear damped Mathieu system and of a nonlinear nano resonator system with integral orders and with fractional orders are studied. By applying numerical analyses such as phase portraits, Poincare maps and bifurcation diagrams, the periodic and chaotic motions are observed. It is found that chaos exists both in the nonlinear damped Mathieu system and in the integral order and fractional order nano resonator systems. (c) 2005 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleChaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.chaos.2005.10.086en_US
dc.identifier.journalCHAOS SOLITONS & FRACTALSen_US
dc.citation.volume32en_US
dc.citation.issue1en_US
dc.citation.spage42en_US
dc.citation.epage61en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000242241300007-
dc.citation.woscount18-
Appears in Collections:Articles


Files in This Item:

  1. 000242241300007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.