完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Chih-Hungen_US
dc.contributor.authorTzeng, Gwo-Hshiungen_US
dc.contributor.authorGoo, Yeong-Jiaen_US
dc.contributor.authorFang, Wen-Changen_US
dc.date.accessioned2014-12-08T15:14:47Z-
dc.date.available2014-12-08T15:14:47Z-
dc.date.issued2007-02-01en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.eswa.2005.12.008en_US
dc.identifier.urihttp://hdl.handle.net/11536/11173-
dc.description.abstractTwo parameters, C and Q, must be carefully predetermined in establishing an efficient support vector machine (SVM) model. Therefore, the purpose of this study is to develop a genetic-based SVM (GA-SVM) model that can automatically determine the optimal parameters, C and Q, of SVM with the highest predictive accuracy and generalization ability simultaneously. This paper pioneered on employing a real-valued genetic algorithm (GA) to optimize the parameters of SVM for predicting bankruptcy. Additionally, the proposed GA-SVM model was tested on the prediction of financial crisis in Taiwan to compare the accuracy of the proposed GA-SVM model with that of other models in multivariate statistics (DA, logit, and probit) and artificial intelligence (NN and SVM). Experimental results show that the GA-SVM model performs the best predictive accuracy, implying that integrating the RGA with traditional SVM model is very successful. (C) 2005 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectsupport vector machine (SVM)en_US
dc.subjectreal-valueden_US
dc.subjectgenetic algorithm (GM)en_US
dc.subjectfinancial distressen_US
dc.subjectpredictionen_US
dc.subjectbootstrap simulationen_US
dc.titleA real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcyen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2005.12.008en_US
dc.identifier.journalEXPERT SYSTEMS WITH APPLICATIONSen_US
dc.citation.volume32en_US
dc.citation.issue2en_US
dc.citation.spage397en_US
dc.citation.epage408en_US
dc.contributor.department科技管理研究所zh_TW
dc.contributor.departmentInstitute of Management of Technologyen_US
dc.identifier.wosnumberWOS:000242979100014-
dc.citation.woscount116-
顯示於類別:期刊論文


文件中的檔案:

  1. 000242979100014.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。