Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, LAen_US
dc.contributor.authorThompson, Pen_US
dc.date.accessioned2014-12-08T15:01:13Z-
dc.date.available2014-12-08T15:01:13Z-
dc.date.issued1998en_US
dc.identifier.issn0361-0926en_US
dc.identifier.urihttp://hdl.handle.net/11536/111-
dc.description.abstractA class of trimmed linear conditional estimators based on regression quantiles for the linear regression model is introduced. This class serves as a robust analogue of non-robust linear unbiased estimators. Asymptotic analysis then shows that the trimmed least squares estimator based on regression quantiles (Koenker and Bassett (1978)) is the best in this estimator class in terms of asymptotic covariance matrices. The class of trimmed linear conditional estimators contains the Mallows-type bounded influence trimmed means (see De Jongh et al (1988)) and trimmed instrumental variables estimators. A large sample methodology based on trimmed instrumental variables estimator for confidence ellipsoids and hypothesis testing is also provided.en_US
dc.language.isoen_USen_US
dc.subjectinstrumental variables estimatoren_US
dc.subjectlinear conditional estimatoren_US
dc.subjectlinear regressionen_US
dc.subjectregression quantileen_US
dc.subjecttrimmed least squares estimatoren_US
dc.titleTrimmed least squares estimator as best trimmed linear conditional estimator for linear regression modelen_US
dc.typeArticleen_US
dc.identifier.journalCOMMUNICATIONS IN STATISTICS-THEORY AND METHODSen_US
dc.citation.volume27en_US
dc.citation.issue7en_US
dc.citation.spage1835en_US
dc.citation.epage1849en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000074669900014-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000074669900014.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.