完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHu, Jwu-Shengen_US
dc.contributor.authorSu, Tzung-Minen_US
dc.date.accessioned2014-12-08T15:15:08Z-
dc.date.available2014-12-08T15:15:08Z-
dc.date.issued2007en_US
dc.identifier.issn1687-6172en_US
dc.identifier.urihttp://hdl.handle.net/11536/11371-
dc.identifier.urihttp://dx.doi.org/10.1155/2007/82931en_US
dc.description.abstractThis work describes a robust background subtraction scheme involving shadow and highlight removal for indoor environmental surveillance. Foreground regions can be precisely extracted by the proposed scheme despite illumination variations and dynamic background. The Gaussian mixture model (GMM) is applied to construct a color-based probabilistic background model (CBM). Based on CBM, the short-term color-based background model (STCBM) and the long-term color-based background model (LTCBM) can be extracted and applied to build the gradient-based version of the probabilistic background model (GBM). Furthermore, a new dynamic cone-shape boundary in the RGB color space, called a cone-shape illumination model (CSIM), is proposed to distinguish pixels among shadow, highlight, and foreground. A novel scheme combining the CBM, GBM, and CSIM is proposed to determine the background which can be used to detect abnormal conditions. The effectiveness of the proposed method is demonstrated via experiments with several video clips collected in a complex indoor environment.en_US
dc.language.isoen_USen_US
dc.titleRobust background subtraction with shadow and highlight removal for indoor surveillanceen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2007/82931en_US
dc.identifier.journalEURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSINGen_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000248210700001-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000248210700001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。