Full metadata record
DC FieldValueLanguage
dc.contributor.authorShiue, Chin-Linen_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2014-12-08T15:15:11Z-
dc.date.available2014-12-08T15:15:11Z-
dc.date.issued2006-12-28en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.disc.2006.06.016en_US
dc.identifier.urihttp://hdl.handle.net/11536/11418-
dc.description.abstractIn this paper, we prove that the alpha-labeling number of trees T, T-alpha <= [r/2] n where n = vertical bar E(T)vertical bar and r is the radius of T. This improves the known result T-alpha <= e(O(root nlogn)) tremendously and this upper bound is very close to the upper bound T-alpha <= n conjectured by Snevily. Moreover, we prove that a tree with n edges and radius r decomposes K-1 for some t <= (r + 1)n(2) + 1. (c) 2006 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectalpha-labeling numberen_US
dc.subjecttree decompositionen_US
dc.titlealpha-labeling number of treesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2006.06.016en_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume306en_US
dc.citation.issue24en_US
dc.citation.spage3290en_US
dc.citation.epage3296en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000242630900008-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000242630900008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.