完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Shiue, Chin-Lin | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.date.accessioned | 2014-12-08T15:15:11Z | - |
dc.date.available | 2014-12-08T15:15:11Z | - |
dc.date.issued | 2006-12-28 | en_US |
dc.identifier.issn | 0012-365X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.disc.2006.06.016 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/11418 | - |
dc.description.abstract | In this paper, we prove that the alpha-labeling number of trees T, T-alpha <= [r/2] n where n = vertical bar E(T)vertical bar and r is the radius of T. This improves the known result T-alpha <= e(O(root nlogn)) tremendously and this upper bound is very close to the upper bound T-alpha <= n conjectured by Snevily. Moreover, we prove that a tree with n edges and radius r decomposes K-1 for some t <= (r + 1)n(2) + 1. (c) 2006 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | alpha-labeling number | en_US |
dc.subject | tree decomposition | en_US |
dc.title | alpha-labeling number of trees | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.disc.2006.06.016 | en_US |
dc.identifier.journal | DISCRETE MATHEMATICS | en_US |
dc.citation.volume | 306 | en_US |
dc.citation.issue | 24 | en_US |
dc.citation.spage | 3290 | en_US |
dc.citation.epage | 3296 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000242630900008 | - |
dc.citation.woscount | 1 | - |
顯示於類別: | 期刊論文 |