Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2014-12-08T15:15:15Z-
dc.date.available2014-12-08T15:15:15Z-
dc.date.issued2006-12-01en_US
dc.identifier.issn0378-620Xen_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00020-006-1438-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/11455-
dc.description.abstractLet A be a bounded linear operator on a complex separable Hilbert space H. We show that A is a C-0(N) contraction if and only if A = U(I - Sigma(d)(j=1) r(j)(x(j) circle times x(j))), where U is a singular unitary operator with multiplicity d <= N, 0 < r(1),...,r(d) < 1 and x(1),...,x(d) are orthonormal vectors satisfying V{U-k x(j) : k >= 0, 1 <= j <= d} = H. For a C-0(N) contraction, this gives a complete characterization of its polar decompositions with unitary factors.en_US
dc.language.isoen_USen_US
dc.subjectC-0(N) contractionen_US
dc.subjectpolar decompositionen_US
dc.subjectsingular unitary operatoren_US
dc.subjectcompression of the shiften_US
dc.subjectfinite multiplicityen_US
dc.subjectdefect indexen_US
dc.titlePolar decompositions of C-0(N) contractionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00020-006-1438-0en_US
dc.identifier.journalINTEGRAL EQUATIONS AND OPERATOR THEORYen_US
dc.citation.volume56en_US
dc.citation.issue4en_US
dc.citation.spage559en_US
dc.citation.epage569en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000242985000006-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000242985000006.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.