Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wu, Pei Yuan | en_US |
dc.date.accessioned | 2014-12-08T15:15:15Z | - |
dc.date.available | 2014-12-08T15:15:15Z | - |
dc.date.issued | 2006-12-01 | en_US |
dc.identifier.issn | 0378-620X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s00020-006-1438-0 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/11455 | - |
dc.description.abstract | Let A be a bounded linear operator on a complex separable Hilbert space H. We show that A is a C-0(N) contraction if and only if A = U(I - Sigma(d)(j=1) r(j)(x(j) circle times x(j))), where U is a singular unitary operator with multiplicity d <= N, 0 < r(1),...,r(d) < 1 and x(1),...,x(d) are orthonormal vectors satisfying V{U-k x(j) : k >= 0, 1 <= j <= d} = H. For a C-0(N) contraction, this gives a complete characterization of its polar decompositions with unitary factors. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | C-0(N) contraction | en_US |
dc.subject | polar decomposition | en_US |
dc.subject | singular unitary operator | en_US |
dc.subject | compression of the shift | en_US |
dc.subject | finite multiplicity | en_US |
dc.subject | defect index | en_US |
dc.title | Polar decompositions of C-0(N) contractions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00020-006-1438-0 | en_US |
dc.identifier.journal | INTEGRAL EQUATIONS AND OPERATOR THEORY | en_US |
dc.citation.volume | 56 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 559 | en_US |
dc.citation.epage | 569 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000242985000006 | - |
dc.citation.woscount | 2 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.