完整後設資料紀錄
DC 欄位語言
dc.contributor.authorSha, D. Y.en_US
dc.contributor.authorHsu, Cheng-Yuen_US
dc.date.accessioned2014-12-08T15:15:17Z-
dc.date.available2014-12-08T15:15:17Z-
dc.date.issued2006-12-01en_US
dc.identifier.issn0360-8352en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cie.2006.09.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/11465-
dc.description.abstractA hybrid particle swarm optimization (PSO) for the job shop problem (JSP) is proposed in this paper. In previous research. PSO particles search solutions in a continuous solution space. Since the solution space of the JSP is discrete, we modified the particle position representation, particle movement, and particle velocity to better suit PSO for the JSP. We modified the particle position based on preference list-based representation, particle movement based on swap operator, and particle velocity based on the tabu list concept in our algorithm. Giffler and Thompson's heuristic is used to decode a particle position into a schedule. Furthermore, we applied tabu search to improve the solution quality. The computational results show that the modified PSO performs better than the original design, and that the hybrid PSO is better than other traditional metaheuristics. (c) 2006 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectjob shop problemen_US
dc.subjectschedulingen_US
dc.subjectparticle swarm optimizationen_US
dc.titleA hybrid particle swarm optimization for job shop scheduling problemen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cie.2006.09.002en_US
dc.identifier.journalCOMPUTERS & INDUSTRIAL ENGINEERINGen_US
dc.citation.volume51en_US
dc.citation.issue4en_US
dc.citation.spage791en_US
dc.citation.epage808en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000243055300016-
dc.citation.woscount104-
顯示於類別:期刊論文


文件中的檔案:

  1. 000243055300016.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。