完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChu, Shou Chiaen_US
dc.contributor.authorHsiao, Tzu-Chien Ryanen_US
dc.contributor.authorLin, Jen K.en_US
dc.contributor.authorWang, Chih-Yuen_US
dc.contributor.authorChiang, Huihua Kennyen_US
dc.date.accessioned2014-12-08T15:15:28Z-
dc.date.available2014-12-08T15:15:28Z-
dc.date.issued2006-11-01en_US
dc.identifier.issn0018-9294en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TBME.2006.883643en_US
dc.identifier.urihttp://hdl.handle.net/11536/11573-
dc.description.abstractWe compared the performance of three widely used linear multivariate methods for autofluorescence spectroscopic tissues differentiation. Principal component analysis (PCA), partial least squares (PLS), and multivariate linear regression (MVLR) were compared for differentiating at normal, tubular adenoma/epithelial dysplasia and cancer in colorectal and oral tissues. The methods' performances were evaluated by cross-validation analysis. The group-averaged predictive diagnostic accuracies were 85% (PCA), 90% (PLS), and 89% (MVLR) for colorectal tissues; 89% (PCA), 90% (PLS), and 90% (MVLR) for oral tissues. This study found that both PLS and MVLR achieved higher diagnostic results than did PCA.en_US
dc.language.isoen_USen_US
dc.subjectcolorectal tissueen_US
dc.subjectlight-induced autofluorescenceen_US
dc.subjectmultivariate linear regressionen_US
dc.subjectoral tissueen_US
dc.subjectpartial least squaresen_US
dc.subjectprincipal component analysisen_US
dc.titleComparison of the performance of linear multivariate analysis methods for normal and dyplasia tissues differentiation using autofluorescence spectroscopyen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TBME.2006.883643en_US
dc.identifier.journalIEEE TRANSACTIONS ON BIOMEDICAL ENGINEERINGen_US
dc.citation.volume53en_US
dc.citation.issue11en_US
dc.citation.spage2265en_US
dc.citation.epage2273en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000241536900016-
dc.citation.woscount15-
顯示於類別:期刊論文


文件中的檔案:

  1. 000241536900016.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。