Full metadata record
DC FieldValueLanguage
dc.contributor.authorGao, Hongen_US
dc.contributor.authorHwang, F. K.en_US
dc.contributor.authorThai, My T.en_US
dc.contributor.authorWu, Weilien_US
dc.contributor.authorZnati, Taieben_US
dc.date.accessioned2014-12-08T15:15:32Z-
dc.date.available2014-12-08T15:15:32Z-
dc.date.issued2006-11-01en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10878-006-9634-zen_US
dc.identifier.urihttp://hdl.handle.net/11536/11622-
dc.description.abstractGiven a hypergraph with at most d positive edges, identify all positive edges with the minimum number of tests each of which tests on a subset of nodes, called a pool, and the outcome is positive if and only if the pool contains a positive edge. This problem is called the group testing in hypergraphs, which has been found to have many applications in molecular biology, such as the interactions between bait proteins and prey proteins, the complexes of eukaryotic DNA transcription and RNA translation. In this paper, we present a general construction for constructions of nonadaptive algorithms for group testing in hypergraphs.en_US
dc.language.isoen_USen_US
dc.subjectgroup testingen_US
dc.subjectpooling designsen_US
dc.subjectcomplexen_US
dc.subjectDNA library screeningen_US
dc.titleConstruction of d(H)-disjunct matrix for group testing in hypergraphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10878-006-9634-zen_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume12en_US
dc.citation.issue3en_US
dc.citation.spage297en_US
dc.citation.epage301en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000240317300007-
dc.citation.woscount12-
Appears in Collections:Articles


Files in This Item:

  1. 000240317300007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.