Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wu, Shung-Liang | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.date.accessioned | 2014-12-08T15:15:33Z | - |
dc.date.available | 2014-12-08T15:15:33Z | - |
dc.date.issued | 2006-11-01 | en_US |
dc.identifier.issn | 0911-0119 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s00373-006-0658-z | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/11643 | - |
dc.description.abstract | It was proved by Buratti and Del Fra that for each pair of odd integers r and m, there exists a cyclic m-cycle system of the balanced complete r-partite graph K-r(m) except for the case when r=m=3. In this note, we study the existence of a cyclic m-cycle system of K-r(m) where r or m is even. Combining the work of Buratti and Del Fra, we prove that cyclic m-cycle systems of K-r(m) exist if and only if (a) K-r(m) is an even graph (b) (r, m) not equal (3, 3) and (c) (r,m) not equivalent to (t , 2) (mod 4) where t is an element of {2,3}. | en_US |
dc.language.iso | en_US | en_US |
dc.title | A note on cyclic m-cycle systems of K-r((m)) | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00373-006-0658-z | en_US |
dc.identifier.journal | GRAPHS AND COMBINATORICS | en_US |
dc.citation.volume | 22 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 427 | en_US |
dc.citation.epage | 432 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000242014200013 | - |
dc.citation.woscount | 1 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.