Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Shung-Liangen_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2014-12-08T15:15:33Z-
dc.date.available2014-12-08T15:15:33Z-
dc.date.issued2006-11-01en_US
dc.identifier.issn0911-0119en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00373-006-0658-zen_US
dc.identifier.urihttp://hdl.handle.net/11536/11643-
dc.description.abstractIt was proved by Buratti and Del Fra that for each pair of odd integers r and m, there exists a cyclic m-cycle system of the balanced complete r-partite graph K-r(m) except for the case when r=m=3. In this note, we study the existence of a cyclic m-cycle system of K-r(m) where r or m is even. Combining the work of Buratti and Del Fra, we prove that cyclic m-cycle systems of K-r(m) exist if and only if (a) K-r(m) is an even graph (b) (r, m) not equal (3, 3) and (c) (r,m) not equivalent to (t , 2) (mod 4) where t is an element of {2,3}.en_US
dc.language.isoen_USen_US
dc.titleA note on cyclic m-cycle systems of K-r((m))en_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00373-006-0658-zen_US
dc.identifier.journalGRAPHS AND COMBINATORICSen_US
dc.citation.volume22en_US
dc.citation.issue3en_US
dc.citation.spage427en_US
dc.citation.epage432en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000242014200013-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000242014200013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.