完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiang, Yu-Mingen_US
dc.contributor.authorShih, Sheng-Wenen_US
dc.contributor.authorShih, Arthur Chun-Chiehen_US
dc.contributor.authorLiao, Hong-Yuan Marken_US
dc.contributor.authorLin, Cheng-Chungen_US
dc.date.accessioned2014-12-08T15:15:40Z-
dc.date.available2014-12-08T15:15:40Z-
dc.date.issued2007en_US
dc.identifier.isbn978-1-4244-1273-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/11701-
dc.identifier.urihttp://dx.doi.org/10.1109/MMSP.2007.4412874en_US
dc.description.abstractVisual analysis of human behavior has generated considerable interest in the field of computer vision because it has a wide spectrum of potential applications. Atomic human action recognition is an important part of a human behavior analysis system. In this paper, we propose a language modeling framework for this task. The framework is comprised of two modules: a posture labeling module, and an atomic action learning and recognition module. A posture template selection algorithm is developed based on a modified shape context matching technique. The posture templates form a codebook that is used to convert input posture sequences into training symbol sequences or recognition symbol sequences. Finally, a variable-length Markov model technique is applied to learn and recognize the input symbol sequences of atomic actions. Experiments on real data demonstrate the efficacy of the proposed system.en_US
dc.language.isoen_USen_US
dc.subjecthuman behavior analysisen_US
dc.subjectlanguage modelingen_US
dc.subjectposture template selectionen_US
dc.subjectvariable-lenth Markov modeen_US
dc.titleA language modeling approach to atomic human action recognitionen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/MMSP.2007.4412874en_US
dc.identifier.journal2007 IEEE NINTH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSINGen_US
dc.citation.spage288en_US
dc.citation.epage291en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000253413900073-
顯示於類別:會議論文


文件中的檔案:

  1. 000253413900073.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。