Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pan, Jun-Jie | en_US |
dc.contributor.author | Chang, Gerard J. | en_US |
dc.date.accessioned | 2014-12-08T15:15:49Z | - |
dc.date.available | 2014-12-08T15:15:49Z | - |
dc.date.issued | 2006-09-06 | en_US |
dc.identifier.issn | 0012-365X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.disc.2006.04.003 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/11796 | - |
dc.description.abstract | An isometric path between two vertices in a graph G is a shortest path joining them. The isometric path number of G, denoted by ip(G), is the minimum number of isometric paths needed to cover all vertices of G. In this paper, we determine exact values of isometric path numbers of complete r-partite graphs and Cartesian products of 2 or 3 complete graphs. (c) 2006 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | isometric path | en_US |
dc.subject | complete r-partite graph | en_US |
dc.subject | hamming graphs | en_US |
dc.title | Isometric path numbers of graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.disc.2006.04.003 | en_US |
dc.identifier.journal | DISCRETE MATHEMATICS | en_US |
dc.citation.volume | 306 | en_US |
dc.citation.issue | 17 | en_US |
dc.citation.spage | 2091 | en_US |
dc.citation.epage | 2096 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000240421800009 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.