Full metadata record
DC FieldValueLanguage
dc.contributor.authorHo, Shinn-Yingen_US
dc.contributor.authorHsieh, Chih-Hungen_US
dc.contributor.authorChen, Hung-Mingen_US
dc.contributor.authorHuang, Hui-Lingen_US
dc.date.accessioned2014-12-08T15:15:49Z-
dc.date.available2014-12-08T15:15:49Z-
dc.date.issued2006-09-01en_US
dc.identifier.issn0303-2647en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.biosystems.2006.01.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/11802-
dc.description.abstractAn accurate classifier with linguistic interpretability using a small number of relevant genes is beneficial to microarray data analysis and development of inexpensive diagnostic tests. Several frequently used techniques for designing classifiers of microarray data, such as support vector machine, neural networks, k-nearest neighbor, and logistic regression model, suffer from low interpretabilities. This paper proposes an interpretable gene expression classifier (named iGEC) with an accurate and compact fuzzy rule base for microarray data analysis. The design of iGEC has three objectives to be simultaneously optimized: maximal classification accuracy, minimal number of rules, and minimal number of used genes. An "intelligent" genetic algorithm IGA is used to efficiently solve the design problem with a large number of tuning parameters. The performance of iGEC is evaluated using eight commonly-used data sets. It is shown that iGEC has an accurate, concise, and interpretable rule base (1.1 rules per class) on average in terms of test classification accuracy (87.9%), rule number (3.9), and used gene number (5.0). Moreover, iGEC not only has better performance than the existing fuzzy rule-based classifier in terms of the above-mentioned objectives, but also is more accurate than some existing non-rule-based classifiers. (c) 2006 Elsevier Ireland Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy classifieren_US
dc.subjectgene expressionen_US
dc.subjectintelligent genetic algorithmen_US
dc.subjectmicroarray data analysisen_US
dc.subjectpattern recognitionen_US
dc.titleInterpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.biosystems.2006.01.002en_US
dc.identifier.journalBIOSYSTEMSen_US
dc.citation.volume85en_US
dc.citation.issue3en_US
dc.citation.spage165en_US
dc.citation.epage176en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000240571300001-
dc.citation.woscount20-
Appears in Collections:Articles


Files in This Item:

  1. 000240571300001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.