完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chang, Fei-Hwang | en_US |
dc.contributor.author | Hwang, Frank K. | en_US |
dc.contributor.author | Rothblum, Uriel G. | en_US |
dc.date.accessioned | 2014-12-08T15:16:00Z | - |
dc.date.available | 2014-12-08T15:16:00Z | - |
dc.date.issued | 2006-09-01 | en_US |
dc.identifier.issn | 0925-5001 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s10898-006-9025-0 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/11891 | - |
dc.description.abstract | In mean-partition problems the goal is to partition a finite set of elements, each associated with a d-vector, into p disjoint parts so as to optimize an objective, which depends on the averages of the vectors that are assigned to each of the parts. Each partition is then associated with a d x p matrix whose columns are the corresponding averages and a useful approach in studying the problem is to explore the mean-partition polytope, defined as the convex hull of the set of matrices associated with feasible partitions. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | partition problems | en_US |
dc.subject | combinatorial optimization | en_US |
dc.subject | means | en_US |
dc.title | The mean-partition problem | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10898-006-9025-0 | en_US |
dc.identifier.journal | JOURNAL OF GLOBAL OPTIMIZATION | en_US |
dc.citation.volume | 36 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 21 | en_US |
dc.citation.epage | 31 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000239729700002 | - |
dc.citation.woscount | 1 | - |
顯示於類別: | 期刊論文 |