完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chiang, Yuang-Chin | en_US |
dc.contributor.author | Chen, Lin-An | en_US |
dc.contributor.author | Yang, Hsien-Chueh Peter | en_US |
dc.date.accessioned | 2014-12-08T15:16:00Z | - |
dc.date.available | 2014-12-08T15:16:00Z | - |
dc.date.issued | 2006-09-01 | en_US |
dc.identifier.issn | 0266-4763 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1080/02664760600743464 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/11892 | - |
dc.description.abstract | To develop estimators with stronger efficiencies than the trimmed means which use the empirical quantile, Kim (1992) and Chen & Chiang (1996), implicitly or explicitly used the symmetric quantile, and thus introduced new trimmed means for location and linear regression models, respectively. This study further investigates the properties of the symmetric quantile and extends its application in several aspects. ( a) The symmetric quantile is more efficient than the empirical quantiles in asymptotic variances when quantile percentage a is either small or large. This reveals that for any proposal involving the alpha th quantile of small or large alpha s, the symmetric quantile is the right choice; (b) a trimmed mean based on it has asymptotic variance achieving a Cramer-Rao lower bound in one heavy tail distribution; ( c) an improvement of the quantiles-based control chart by Grimshaw & Alt ( 1997) is discussed; (d) Monte Carlo simulations of two new scale estimators based on symmetric quantiles also support this new quantile. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | regression quantile | en_US |
dc.subject | scale estimator | en_US |
dc.subject | trimmed mean | en_US |
dc.title | Symmetric quantiles and their applications | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/02664760600743464 | en_US |
dc.identifier.journal | JOURNAL OF APPLIED STATISTICS | en_US |
dc.citation.volume | 33 | en_US |
dc.citation.issue | 8 | en_US |
dc.citation.spage | 807 | en_US |
dc.citation.epage | 817 | en_US |
dc.contributor.department | 統計學研究所 | zh_TW |
dc.contributor.department | Institute of Statistics | en_US |
dc.identifier.wosnumber | WOS:000240434900004 | - |
dc.citation.woscount | 2 | - |
顯示於類別: | 期刊論文 |