Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yang, Yifan | en_US |
dc.date.accessioned | 2014-12-08T15:16:01Z | - |
dc.date.available | 2014-12-08T15:16:01Z | - |
dc.date.issued | 2006-08-20 | en_US |
dc.identifier.issn | 0001-8708 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.aim.2005.05.019 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/11910 | - |
dc.description.abstract | We obtain defining equations of modular curves X-0(N), X-1(N), and X(N) by explicitly constructing modular functions using generalized Dedekind eta functions. As applications, we describe a method of obtaining a basis for the space of cusp forms of weight 2 on a congruence subgroup. We also use our model of X-0(37) to find explicit modular parameterization of rational elliptic curves of conductor 37. (C) 2005 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | modular curves | en_US |
dc.subject | generalized Dedekind eta-functions | en_US |
dc.subject | cusp forms | en_US |
dc.subject | modular parameterization of rational elliptic curves | en_US |
dc.title | Defining equations of modular curves | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.aim.2005.05.019 | en_US |
dc.identifier.journal | ADVANCES IN MATHEMATICS | en_US |
dc.citation.volume | 204 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 481 | en_US |
dc.citation.epage | 508 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000239821400005 | - |
dc.citation.woscount | 12 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.