Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Yifanen_US
dc.date.accessioned2014-12-08T15:16:01Z-
dc.date.available2014-12-08T15:16:01Z-
dc.date.issued2006-08-20en_US
dc.identifier.issn0001-8708en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.aim.2005.05.019en_US
dc.identifier.urihttp://hdl.handle.net/11536/11910-
dc.description.abstractWe obtain defining equations of modular curves X-0(N), X-1(N), and X(N) by explicitly constructing modular functions using generalized Dedekind eta functions. As applications, we describe a method of obtaining a basis for the space of cusp forms of weight 2 on a congruence subgroup. We also use our model of X-0(37) to find explicit modular parameterization of rational elliptic curves of conductor 37. (C) 2005 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectmodular curvesen_US
dc.subjectgeneralized Dedekind eta-functionsen_US
dc.subjectcusp formsen_US
dc.subjectmodular parameterization of rational elliptic curvesen_US
dc.titleDefining equations of modular curvesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.aim.2005.05.019en_US
dc.identifier.journalADVANCES IN MATHEMATICSen_US
dc.citation.volume204en_US
dc.citation.issue2en_US
dc.citation.spage481en_US
dc.citation.epage508en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000239821400005-
dc.citation.woscount12-
Appears in Collections:Articles


Files in This Item:

  1. 000239821400005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.