Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Chun-Lungen_US
dc.contributor.authorFan, Kan-Weien_US
dc.contributor.authorChung, I-Fangen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:16:05Z-
dc.date.available2014-12-08T15:16:05Z-
dc.date.issued2006-08-01en_US
dc.identifier.issn1057-7130en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCSII.2006.876388en_US
dc.identifier.urihttp://hdl.handle.net/11536/11939-
dc.description.abstractThe cellular neural network (CNN) is a powerful technique to mimic the local function of biological neural circuits, especially the human visual pathway system, for real-time image and video processing. Recently, many studies show that an integrated CNN system can solve more complex high-level intelligent problems. In this brief, we extend our previously proposed multi-CNN integrated system, called recurrent fuzzy CNN (RFCNN) which considers uncoupled CNNs only, to automatically learn the proper network structure and parameters simultaneously of coupled CNNs, which is called recurrent fuzzy coupled CNN (RFCCNN). The proposed RFCCNN provides a solution to the current dilemma on the decision of templates and/or fuzzy rules in the existing integrated (fuzzy) CNN systems. For comparison, the capability of the proposed RFCCNN is demonstrated on the same defect inspection problems. Simulation results show that the proposed RFCCNN outperforms the RFCNN.en_US
dc.language.isoen_USen_US
dc.subjectcellular neural network (CNN) template designen_US
dc.subjectdefect inspectionen_US
dc.subjectfuzzy clusteringen_US
dc.subjectfuzzy neural networken_US
dc.titleA recurrent fuzzy coupled cellular neural network system with automatic structure and template learningen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCSII.2006.876388en_US
dc.identifier.journalIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFSen_US
dc.citation.volume53en_US
dc.citation.issue8en_US
dc.citation.spage602en_US
dc.citation.epage606en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000240167600002-
dc.citation.woscount6-
Appears in Collections:Articles


Files in This Item:

  1. 000240167600002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.