Full metadata record
DC FieldValueLanguage
dc.contributor.authorFang, Jian-Shuenen_US
dc.contributor.authorHao, Qien_US
dc.contributor.authorBrady, David J.en_US
dc.contributor.authorGuenther, Bob D.en_US
dc.contributor.authorHsu, Ken Y.en_US
dc.date.accessioned2014-12-08T15:16:11Z-
dc.date.available2014-12-08T15:16:11Z-
dc.date.issued2006-07-24en_US
dc.identifier.issn1094-4087en_US
dc.identifier.urihttp://dx.doi.org/10.1364/OE.14.006643en_US
dc.identifier.urihttp://hdl.handle.net/11536/12016-
dc.description.abstractThis paper proposes a real-time human identification system using a pyroelectric infrared ( PIR) detector array and hidden Markov models ( HMMs). A PIR detector array with masked Fresnel lens arrays is used to generate digital sequential data that can represent a human motion feature. HMMs are trained to statistically model the motion features of individuals through an expectation-maximization ( EM) learning process. Human subjects are recognized by evaluating a set of new feature data against the trained HMMs using the maximum-likelihood ( ML) criterion. We have developed a prototype system to verify the proposed method. Sensor modules with different numbers of detectors and different sampling masks were tested to maximize the identification capability of the sensor system. (c) 2006 Optical Society of America.en_US
dc.language.isoen_USen_US
dc.titleReal-time human identification using a pyroelectric infrared detector array and hidden Markov modelsen_US
dc.typeArticleen_US
dc.identifier.doi10.1364/OE.14.006643en_US
dc.identifier.journalOPTICS EXPRESSen_US
dc.citation.volume14en_US
dc.citation.issue15en_US
dc.citation.spage6643en_US
dc.citation.epage6658en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000239342300008-
dc.citation.woscount20-
Appears in Collections:Articles


Files in This Item:

  1. 000239342300008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.