Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Y-Chuangen_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.date.accessioned2014-12-08T15:16:23Z-
dc.date.available2014-12-08T15:16:23Z-
dc.date.issued2006-06-15en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.amc.2005.11.023en_US
dc.identifier.urihttp://hdl.handle.net/11536/12148-
dc.description.abstractFor the interconnection network topology, it is usually represented by a graph. When a network is used. processors and/or links faults may happen. Thus, it is meaningful to consider faulty networks, We consider k-regular graphs in this paper. We define a k-regular hamiltonian and hamiltonian connected graph G is super fault-tolerant hamiltonian if G remains hamiltonian after removing at most k - 2 vertices and/or edges and remains hamiltonian connected after removing at most k - 3 vertices and/or edges. A Super fault-tolerant hamiltonian graph has a certain optimal flavor with respect to the fault tolerant hamiltonicity and fault-tolerant hamiltonian connectivity. The aim of this paper is to investigate a construction scheme to construct various super fault-tolerant hamiltonian graphs. Along the way. the recursire circulant graph is a special case of our construction scheme. and the super fault-tolerant hamiltonian property of recursive circulant graph is obtained. (c) 2005 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjecthamiltonianen_US
dc.subjecthamiltonian connecteden_US
dc.subjectfault toleranceen_US
dc.subjectsuper fault-tolerant hamiltonianen_US
dc.subjectrecursive circulant graphsen_US
dc.titleA recursively construction scheme for super fault-tolerant hamiltonian graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2005.11.023en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume177en_US
dc.citation.issue2en_US
dc.citation.spage465en_US
dc.citation.epage481en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000239135700002-
dc.citation.woscount9-
Appears in Collections:Articles


Files in This Item:

  1. 000239135700002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.