完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, TIen_US
dc.contributor.authorLee, JCen_US
dc.contributor.authorHo, HJen_US
dc.date.accessioned2014-12-08T15:16:29Z-
dc.date.available2014-12-08T15:16:29Z-
dc.date.issued2006-06-01en_US
dc.identifier.issn0031-3203en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.patcog.2005.12.014en_US
dc.identifier.urihttp://hdl.handle.net/11536/12196-
dc.description.abstractIt is an important research issue to deal with mixture models when missing values occur in the data. In this paper, computational strategies using auxiliary indicator matrices are introduced for efficiently handling mixtures of multivariate normal distributions when the data are missing at random and have an arbitrary missing data pattern, meaning that missing data can occur anywhere. We develop a novel EM algorithm that can dramatically save computation time and be exploited in many applications, such as density estimation, supervised clustering and prediction of missing values. In the aspect of multiple imputations for missing data, we also offer a data augmentation scheme using the Gibbs sampler. Our proposed methodologies are illustrated through some real data sets with varying proportions of missing values. (c) 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectBayesian classifieren_US
dc.subjectdata augmentationen_US
dc.subjectEM algorithrnen_US
dc.subjectincomplete featuresen_US
dc.subjectRao-Blackwellizationen_US
dc.titleOn fast supervised learning for normal mixture models with missing informationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.patcog.2005.12.014en_US
dc.identifier.journalPATTERN RECOGNITIONen_US
dc.citation.volume39en_US
dc.citation.issue6en_US
dc.citation.spage1177en_US
dc.citation.epage1187en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000236696400015-
dc.citation.woscount15-
顯示於類別:期刊論文


文件中的檔案:

  1. 000236696400015.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。