完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, SJen_US
dc.contributor.authorChen, DHen_US
dc.contributor.authorChen, STen_US
dc.date.accessioned2014-12-08T15:16:41Z-
dc.date.available2014-12-08T15:16:41Z-
dc.date.issued2006-05-01en_US
dc.identifier.issn1524-1904en_US
dc.identifier.urihttp://dx.doi.org/10.1002/asmb.615en_US
dc.identifier.urihttp://hdl.handle.net/11536/12309-
dc.description.abstractIt is often the case that some information is available on the parameter of failure time distributions from previous experiments or analyses of failure time data. The Bayesian approach provides the methodology for incorporation of previous information with the current data. In this paper, given a progressively type 11 censored sample from a Rayleigh distribution, Bayesian estimators and credible intervals are obtained for the parameter and reliability function. We also derive the Bayes predictive estimator and highest posterior density prediction interval for future observations. Two numerical examples are presented for illustration and some simulation study and comparisons are performed. Copyright (C) 2006 John Wiley & Sons. Ltd.en_US
dc.language.isoen_USen_US
dc.subjecthighest posterior density intervalen_US
dc.subjectpredictive densityen_US
dc.subjectprediction intervalen_US
dc.subjectprogressively type II censored sampleen_US
dc.subjectreliability functionen_US
dc.titleBayesian inference for Rayleigh distribution under progressive censored sampleen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/asmb.615en_US
dc.identifier.journalAPPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRYen_US
dc.citation.volume22en_US
dc.citation.issue3en_US
dc.citation.spage269en_US
dc.citation.epage279en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000238627600003-
dc.citation.woscount13-
顯示於類別:期刊論文


文件中的檔案:

  1. 000238627600003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。