Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, FHen_US
dc.contributor.authorChen, HBen_US
dc.contributor.authorGuo, JYen_US
dc.contributor.authorHwang, FKen_US
dc.contributor.authorRothblum, UGen_US
dc.date.accessioned2014-12-08T15:16:45Z-
dc.date.available2014-12-08T15:16:45Z-
dc.date.issued2006-05-01en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10878-006-7911-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/12329-
dc.description.abstractConsider the problem of partitioning n nonnegative numbers into p parts, where part i can be assigned n(i) numbers with n(i) lying in a given range. The goal is to maximize a Schur convex function F whose ith argument is the sum of numbers assigned to part i. The shape of a partition is the vector consisting of the sizes of its parts, further, a shape (without referring to a particular partition) is a vector of nonnegative integers (n(1),..., n(p)) which sum to n. A partition is called size-consecutive if there is a ranking of the parts which is consistent with their sizes, and all elements in a higher-ranked part exceed all elements in the lower-ranked part. We demonstrate that one can restrict attention to size-consecutive partitions with shapes that are nonmajorized, we study these shapes, bound their numbers and develop algorithms to enumerate them. Our study extends the analysis of a previous paper by Hwang and Rothblum which discussed the above problem assuming the existence of a majorizing shape.en_US
dc.language.isoen_USen_US
dc.subjectoptimal partitionen_US
dc.subjectbounded-shape partitionen_US
dc.subjectsum partitionen_US
dc.subjectSchur convex functionen_US
dc.titleOne-dimensional optimal bounded-shape partitions for Schur convex sum objective functionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10878-006-7911-5en_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume11en_US
dc.citation.issue3en_US
dc.citation.spage321en_US
dc.citation.epage339en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000237360400005-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000237360400005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.