完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTsao, YPen_US
dc.contributor.authorChang, GJen_US
dc.date.accessioned2014-12-08T15:16:47Z-
dc.date.available2014-12-08T15:16:47Z-
dc.date.issued2006-05-01en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.disc.2006.01.015en_US
dc.identifier.urihttp://hdl.handle.net/11536/12343-
dc.description.abstractThe profile minimization problem arose from the study of sparse matrix technique. In terms of graphs, the problem is to determine the profile of a graph G which is defined as P(G) = min(f) Sigma(v is an element of V(G)) max(x is an element of N[v]) (f(v) - f(x)), where f runs over all bijections from V (G) to [1, 2,..., vertical bar V(G)vertical bar] and N[v] = [v] boolean OR [x is an element of V(G) : xv is an element of E(G)]. The main result of this paper is to determine the profiles of K-m x K-n, K-s,K-t x K-n and P-m x K-n. (c) 2006 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectprofileen_US
dc.subjectproducten_US
dc.subjectcomplete graphen_US
dc.subjectcomplete bipartite graphen_US
dc.subjectpathen_US
dc.titleProfile minimization on products of graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2006.01.015en_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume306en_US
dc.citation.issue8-9en_US
dc.citation.spage792en_US
dc.citation.epage800en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000237997200007-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000237997200007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。