完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Tsao, YP | en_US |
| dc.contributor.author | Chang, GJ | en_US |
| dc.date.accessioned | 2014-12-08T15:16:47Z | - |
| dc.date.available | 2014-12-08T15:16:47Z | - |
| dc.date.issued | 2006-05-01 | en_US |
| dc.identifier.issn | 0012-365X | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1016/j.disc.2006.01.015 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/12343 | - |
| dc.description.abstract | The profile minimization problem arose from the study of sparse matrix technique. In terms of graphs, the problem is to determine the profile of a graph G which is defined as P(G) = min(f) Sigma(v is an element of V(G)) max(x is an element of N[v]) (f(v) - f(x)), where f runs over all bijections from V (G) to [1, 2,..., vertical bar V(G)vertical bar] and N[v] = [v] boolean OR [x is an element of V(G) : xv is an element of E(G)]. The main result of this paper is to determine the profiles of K-m x K-n, K-s,K-t x K-n and P-m x K-n. (c) 2006 Elsevier B.V. All rights reserved. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | profile | en_US |
| dc.subject | product | en_US |
| dc.subject | complete graph | en_US |
| dc.subject | complete bipartite graph | en_US |
| dc.subject | path | en_US |
| dc.title | Profile minimization on products of graphs | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/j.disc.2006.01.015 | en_US |
| dc.identifier.journal | DISCRETE MATHEMATICS | en_US |
| dc.citation.volume | 306 | en_US |
| dc.citation.issue | 8-9 | en_US |
| dc.citation.spage | 792 | en_US |
| dc.citation.epage | 800 | en_US |
| dc.contributor.department | 應用數學系 | zh_TW |
| dc.contributor.department | Department of Applied Mathematics | en_US |
| dc.identifier.wosnumber | WOS:000237997200007 | - |
| dc.citation.woscount | 1 | - |
| 顯示於類別: | 期刊論文 | |

