Full metadata record
DC FieldValueLanguage
dc.contributor.authorDzeng, RJen_US
dc.contributor.authorPan, NFen_US
dc.date.accessioned2014-12-08T15:16:48Z-
dc.date.available2014-12-08T15:16:48Z-
dc.date.issued2006-05-01en_US
dc.identifier.issn0926-5805en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.autcon.2005.06.003en_US
dc.identifier.urihttp://hdl.handle.net/11536/12353-
dc.description.abstractDetermining panel lengths for slurry walls is an engineering issue that involves complex geotechnical, design, and site considerations. In practice, the decision is made through a trial-and-error process. Relevant principles extracted from experts are not sufficiently detailed to generate a solution. This research proposes an inductive learning model for solving this problem. Given a new project whose panel lengths need to be determined, the model chooses similar cases from existing cases, based on case-based reasoning, performs an inductive learning, and uses correctness and coverage rates, and then static rules to verify the induced results. (c) 2005 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectconstruction schedulingen_US
dc.subjectcritiqueen_US
dc.subjectschedule reviewen_US
dc.subjectrule-baseden_US
dc.subjectcase-based reasoningen_US
dc.titleLearning heuristics for determining slurry wall panel lengthsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.autcon.2005.06.003en_US
dc.identifier.journalAUTOMATION IN CONSTRUCTIONen_US
dc.citation.volume15en_US
dc.citation.issue3en_US
dc.citation.spage303en_US
dc.citation.epage313en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000236687600004-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000236687600004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.