完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, TIen_US
dc.contributor.authorLee, JCen_US
dc.date.accessioned2014-12-08T15:16:48Z-
dc.date.available2014-12-08T15:16:48Z-
dc.date.issued2006-04-30en_US
dc.identifier.issn0277-6715en_US
dc.identifier.urihttp://dx.doi.org/10.1002/sim.2384en_US
dc.identifier.urihttp://hdl.handle.net/11536/12355-
dc.description.abstractWe discuss a robust extension of linear mixed models based on the multivariate t distribution. Since longitudinal data are successively collected over time and typically tend to be autocorrelated, we employ a parsimonious first-order autoregressive dependence structure for the within-subject errors. A score test statistic for testing the existence of autocorrelation among the within-subject errors is derived. Moreover, we develop an explicit scoring procedure for the maximum likelihood estimation with standard errors as a by-product. The technique for predicting future responses of a subject given past measurements is also investigated. Results are illustrated with real data from a multiple sclerosis clinical trial. Copyright (c) 2005 John Wiley & Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectfisher scoringen_US
dc.subjectlongitudinal dataen_US
dc.subjectpredictionen_US
dc.subjectrandom effectsen_US
dc.subjectt-REMLen_US
dc.titleA robust approach to t linear mixed models applied to multiple sclerosis dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/sim.2384en_US
dc.identifier.journalSTATISTICS IN MEDICINEen_US
dc.citation.volume25en_US
dc.citation.issue8en_US
dc.citation.spage1397en_US
dc.citation.epage1412en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000237231100009-
dc.citation.woscount15-
顯示於類別:期刊論文


文件中的檔案:

  1. 000237231100009.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。