完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lin, TI | en_US |
dc.contributor.author | Lee, JC | en_US |
dc.date.accessioned | 2014-12-08T15:16:48Z | - |
dc.date.available | 2014-12-08T15:16:48Z | - |
dc.date.issued | 2006-04-30 | en_US |
dc.identifier.issn | 0277-6715 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1002/sim.2384 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/12355 | - |
dc.description.abstract | We discuss a robust extension of linear mixed models based on the multivariate t distribution. Since longitudinal data are successively collected over time and typically tend to be autocorrelated, we employ a parsimonious first-order autoregressive dependence structure for the within-subject errors. A score test statistic for testing the existence of autocorrelation among the within-subject errors is derived. Moreover, we develop an explicit scoring procedure for the maximum likelihood estimation with standard errors as a by-product. The technique for predicting future responses of a subject given past measurements is also investigated. Results are illustrated with real data from a multiple sclerosis clinical trial. Copyright (c) 2005 John Wiley & Sons, Ltd. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | fisher scoring | en_US |
dc.subject | longitudinal data | en_US |
dc.subject | prediction | en_US |
dc.subject | random effects | en_US |
dc.subject | t-REML | en_US |
dc.title | A robust approach to t linear mixed models applied to multiple sclerosis data | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/sim.2384 | en_US |
dc.identifier.journal | STATISTICS IN MEDICINE | en_US |
dc.citation.volume | 25 | en_US |
dc.citation.issue | 8 | en_US |
dc.citation.spage | 1397 | en_US |
dc.citation.epage | 1412 | en_US |
dc.contributor.department | 統計學研究所 | zh_TW |
dc.contributor.department | 資訊管理與財務金融系 註:原資管所+財金所 | zh_TW |
dc.contributor.department | Institute of Statistics | en_US |
dc.contributor.department | Department of Information Management and Finance | en_US |
dc.identifier.wosnumber | WOS:000237231100009 | - |
dc.citation.woscount | 15 | - |
顯示於類別: | 期刊論文 |