Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, CMen_US
dc.contributor.authorHuang, JJen_US
dc.contributor.authorGen, Men_US
dc.contributor.authorTzeng, GHen_US
dc.date.accessioned2014-12-08T15:16:50Z-
dc.date.available2014-12-08T15:16:50Z-
dc.date.issued2006-04-15en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.amc.2005.08.031en_US
dc.identifier.urihttp://hdl.handle.net/11536/12373-
dc.description.abstractIn this paper, the dynamic portfolio selection problem is considered. The Elman network is first designed to simulate the dynamic security behavior. Then, the dynamic covariance matrix is estimated by the cross-covariance matrices. Finally, the dynamic portfolio selection model is formulated. In addition, a numerical example is used to demonstrate the proposed method and compare with the vector autoregression (VAR) model. On the basis of the numerical example, we can conclude that the proposed method outperform to the VAR model and provide the accurate dynamic portfolio selection. (c) 2005 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectneural networken_US
dc.subjectdynamic portfolio selectionen_US
dc.subjectElman networken_US
dc.subjectcross-covariance matricesen_US
dc.subjectvector autoregression (VAR)en_US
dc.titleRecurrent neural network for dynamic portfolio selectionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2005.08.031en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume175en_US
dc.citation.issue2en_US
dc.citation.spage1139en_US
dc.citation.epage1146en_US
dc.contributor.department科技管理研究所zh_TW
dc.contributor.departmentInstitute of Management of Technologyen_US
dc.identifier.wosnumberWOS:000237568000016-
dc.citation.woscount9-
Appears in Collections:Articles


Files in This Item:

  1. 000237568000016.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.