Full metadata record
DC FieldValueLanguage
dc.contributor.authorJou, Yow-Jenen_US
dc.contributor.authorHuang, Chien-Chia Liamen_US
dc.contributor.authorCho, Hsun-Jungen_US
dc.date.accessioned2015-07-21T11:21:10Z-
dc.date.available2015-07-21T11:21:10Z-
dc.date.issued2014-12-01en_US
dc.identifier.issn0943-4062en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00180-014-0504-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/123879-
dc.description.abstractIn this paper, we address data collinearity problems in multiple linear regression from an optimization perspective. We propose a novel linearly constrained quadratic programming model, based on the concept of the variance inflation factor (VIF). We employ the perturbation method that involves imposing a general symmetric non-diagonal perturbation matrix on the correlation matrix. The proposed VIF-based model reduces the largest VIF by minimizing the resulting biases. The VIF-based model can mitigate the harm from data collinearity through the reduction in both the condition number and VIFs, meanwhile improving the statistical significance. The resulting estimator has bounded biases under an iterative framework and hence is termed the least accumulative bias estimator. Certain potential statistical properties can be further considered as the side constraints for the proposed model. Various numerical examples validate the proposed approach.en_US
dc.language.isoen_USen_US
dc.subjectMulticollearityen_US
dc.subjectVariance inflation factoren_US
dc.subjectConvex optimizationen_US
dc.titleA VIF-based optimization model to alleviate collinearity problems in multiple linear regressionen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00180-014-0504-3en_US
dc.identifier.journalCOMPUTATIONAL STATISTICSen_US
dc.citation.volume29en_US
dc.citation.spage1515en_US
dc.citation.epage1541en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000345099200007en_US
dc.citation.woscount0en_US
Appears in Collections:Articles


Files in This Item:

  1. 000345099200007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.