完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKuo, Po-Chihen_US
dc.contributor.authorChen, Yong-Shengen_US
dc.contributor.authorChen, Li-Fenen_US
dc.contributor.authorHsieh, Jen-Chuenen_US
dc.date.accessioned2015-07-21T11:21:00Z-
dc.date.available2015-07-21T11:21:00Z-
dc.date.issued2014-11-15en_US
dc.identifier.issn1053-8119en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.neuroimage.2014.07.046en_US
dc.identifier.urihttp://hdl.handle.net/11536/123902-
dc.description.abstractVisual decoding and encoding are crucial aspects in investigating the representation of visual information in the human brain. This paper proposes a bidirectional model for decoding and encoding of visual stimulus based on manifold representation of the temporal and spatial information extracted from magnetoencephalographic data. In the proposed decoding process, principal component analysis is applied to extract temporal principal components (TPCs) from the visual cortical activity estimated by a beamforming method. The spatial distribution of each TPC is in a high-dimensional space and can be mapped to the corresponding spatiotemporal component (STC) on a low-dimensional manifold. Once the linear mapping between the STC and the wavelet coefficients of the stimulus image is determined, the decoding process can synthesize an image resembling the stimulus image. The encoding process is performed by reversing the mapping or transformation in the decoding model and can predict the spatiotemporal brain activity from a stimulus image. In our experiments using visual stimuli containing eleven combinations of checkerboard patches, the information of spatial layout in the stimulus image was revealed in the embedded manifold. The correlation between the reconstructed and original images was 0.71 and the correlation map between the predicted and original brain activity was highly correlated to the map between the original brain activity for different stimuli (r = 0.89). These results suggest that the temporal component is important in visual processing and manifolds can well represent the information related to visual perception. (c) 2014 Published by Elsevier Inc.en_US
dc.language.isoen_USen_US
dc.subjectVisual decodingen_US
dc.subjectVisual encodingen_US
dc.subjectMagnetoencephalographyen_US
dc.subjectManifolden_US
dc.titleDecoding and encoding of visual patterns using magnetoencephalographic data represented in manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.neuroimage.2014.07.046en_US
dc.identifier.journalNEUROIMAGEen_US
dc.citation.volume102en_US
dc.citation.spage435en_US
dc.citation.epage450en_US
dc.contributor.department分子醫學與生物工程研究所zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentInstitute of Molecular Medicine and Bioengineeringen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000345391700018en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文


文件中的檔案:

  1. 000345391700018.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。