Full metadata record
DC FieldValueLanguage
dc.contributor.authorPan, Jia-Chiunen_US
dc.contributor.authorHuang, Guan-Huaen_US
dc.date.accessioned2015-07-21T11:20:39Z-
dc.date.available2015-07-21T11:20:39Z-
dc.date.issued2014-10-01en_US
dc.identifier.issn0033-3123en_US
dc.identifier.urihttp://dx.doi.org/10.1007/S11336-013-9368-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/124148-
dc.description.abstractThis paper focuses on analyzing data collected in situations where investigators use multiple discrete indicators as surrogates, for example, a set of questionnaires. A very flexible latent class model is used for analysis. We propose a Bayesian framework to perform the joint estimation of the number of latent classes and model parameters. The proposed approach applies the reversible jump Markov chain Monte Carlo to analyze finite mixtures of multivariate multinomial distributions. In the paper, we also develop a procedure for the unique labeling of the classes. We have carried out a detailed sensitivity analysis for various hyperparameter specifications, which leads us to make standard default recommendations for the choice of priors. The usefulness of the proposed method is demonstrated through computer simulations and a study on subtypes of schizophrenia using the Positive and Negative Syndrome Scale (PANSS).en_US
dc.language.isoen_USen_US
dc.subjectcategorical dataen_US
dc.subjectfinite mixture modelen_US
dc.subjectlabel switchingen_US
dc.subjectreversible jump Markov chain Monte Carloen_US
dc.subjectsensitivity analysisen_US
dc.subjectsurrogate endpointen_US
dc.titleBAYESIAN INFERENCES OF LATENT CLASS MODELS WITH AN UNKNOWN NUMBER OF CLASSESen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/S11336-013-9368-7en_US
dc.identifier.journalPSYCHOMETRIKAen_US
dc.citation.volume79en_US
dc.citation.spage621en_US
dc.citation.epage646en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000346602200005en_US
dc.citation.woscount0en_US
Appears in Collections:Articles


Files in This Item:

  1. 000346602200005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.