Full metadata record
DC FieldValueLanguage
dc.contributor.authorFuchs, Michaelen_US
dc.contributor.authorYu, Pei-Duoen_US
dc.date.accessioned2019-04-03T06:41:40Z-
dc.date.available2019-04-03T06:41:40Z-
dc.date.issued2015-01-06en_US
dc.identifier.issn1083-589Xen_US
dc.identifier.urihttp://dx.doi.org/10.1214/ECP.v20-3743en_US
dc.identifier.urihttp://hdl.handle.net/11536/124216-
dc.description.abstractIn a recent paper, Shah and Zaman proposed the rumor center as an effective rumor source estimator for rumor spreading on random graphs. They proved for a very general random tree model that the detection probability remains positive as the number of nodes to which the rumor has spread tends to infinity. Moreover, they derived explicit asymptotic formulas for the detection probability of random d - regular trees and random geometric trees. In this paper, we derive asymptotic formulas for the detection probability of grown simple families of random increasing trees. These families of random trees contain important random tree models as special cases, e. g., binary search trees, recursive trees and plane- oriented recursive trees. Our results show that the detection probability varies from 0 to 1 across these families. Moreover, a brief discussion of the rumor center for unordered trees is given as well.en_US
dc.language.isoen_USen_US
dc.subjectRumor spreadingen_US
dc.subjectrumor centeren_US
dc.subjectdetection probabilityen_US
dc.subjectrandom increasing trees.en_US
dc.titleRumor source detection for rumor spreading on random increasing treesen_US
dc.typeArticleen_US
dc.identifier.doi10.1214/ECP.v20-3743en_US
dc.identifier.journalELECTRONIC COMMUNICATIONS IN PROBABILITYen_US
dc.citation.volume20en_US
dc.citation.spage1en_US
dc.citation.epage12en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000348187100001en_US
dc.citation.woscount2en_US
Appears in Collections:Articles


Files in This Item:

  1. aaf470e258b1f130f155f00e57a6a484.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.